A surprising behavior of gamma-ray bursts
with known redshifts detected by the
Fermi and Swift satellites

Levente Borvák¹, Attila Mészáros², Jakub Řípa²,³
¹University of Dallas, Texas, USA; ²Charles University, Prague, Czech Republic;
³MTA-Eötvös Loránd University, Budapest, Hungary

Abstract
In this contribution gamma-ray bursts with known redshifts are studied. It is shown that an inverse behavior – namely that apparently fainter bursts can on average be at smaller redshifts – can happen. In fact, the results of Mészáros et al. (2011, A& A, 529, A55) are supported by these newer samples.

Inverse behavior of the peak-flux and fluence:
Theory and the Swift satellite

In the article Mészáros A., Řípa J. and Ryde F. (A&A, 529, A55, 2011) a remarkable property of the gamma-ray bursts (GRBS) was found. It can be briefly explained as follows (for details see the mentioned paper).

Given a GRB with measured peak-flux $P(z)$ (with dimension of $ph/cm^2/s$) – where “ph” means photon). If the object has a redshift z, then its isotropic peak-luminosity $L(z)$ (in units of ph/s) is related to the peak-flux by the expression

$$P(z) = \frac{(1+z) L(z)}{4\pi D(z)^2}$$

where $D(z)$ is the luminosity distance of the object.

An instrument measures the peak-flux at an interval $E_i < E < E_f$, where E_i and E_f are the limiting photon energies given by the instrument, and E is the measured energy of the photon. Then the peak-luminosity must be taken from the interval $E_i(1+z)$ and $E_f(1+z)$, not simply from E_i and E_f.

The same relation is also expected for the fluence if it has the dimension erg/cm².

It is standard cosmology that $D(z)$ increases with the redshift. For the exact formula, see Carroll et al., 1992, ARA&A., 20, 499, Eqs. 23-25.

But, on the other hand, it is also possible that $L(z)$ is increasing with z. In Mészáros et al. (2011) it is argued that in some cases $L(z)$ can increase faster than $D(z)^2/(1+z)$ and hence an “inverse” behavior can occur: an apparently fainter GRB can be at a smaller redshift than a brighter one.

This theoretical expectation was shown to happen in Swift’s data. But from Fermi’s data only 6 GRBS were used because at that time those were the only ones available from Fermi’s database with known redshifts.

Here, we use a much wider data set from Fermi to study this inverse behavior.

The sample
For the period from 11 June 2008 (launch of Fermi satellite) to 11 June 2017, 41 GRBs were observed by Fermi with known redshifts.

The inverse behavior of the bursts recorded by Fermi: Peak-flux

If the relation were $L(z) \propto \text{const}$, then on the figure one would see a clear decreasing tendency proportional to $\log[(1+z)/D(z)^2]$.

The inverse behavior of the bursts recorded by Fermi: Fluence

Figure 1: GRB peak-flux data with redshifts collected from the Fermi satellite between 11 June 2008 and 11 June 2017. The 6 GRBs from A&A, 529, A55, 2011 are highlighted.

Figure 3: GRB fluence data with redshifts collected from the Fermi satellite between 11 June 2008 and 11 June 2017. The 6 GRBs from A&A, 529, A55, 2011 highlighted.

Figure 4: The dotted lines show the decreasing of $\log[(1+z)/D(z)^2]$ for the simplest cosmological model with $\Omega_m = 1$ and $\Omega_{\Lambda} = 0$.

Conclusion
The expected trend of inverse behavior is mainly seen for the fluences plotted in Figures 3 and 4. For the peak-fluxes this is not so obvious.

References
2. Carroll et al., 1992, ARA&A., 30, 499